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An example predicted species distribution map. 

 
Figure 1. The two study areas used in the 
application of the framework. The nearshore (20 m 
resolution) North Central Coast and shelf (100 m 
resolution) Northern and Southern Shelf Bioregions. 

Context: 
Species distribution models (SDMs) can be used to predict the distribution of species by relating 
observations of species occurrence to environmental data. Understanding species’ distributions can 
inform a variety of management activities including marine spatial planning and emergency pollution 
response. SDMs can also identify gaps in ecological knowledge, helping to target future survey and 
research efforts. However, SDMs can be misapplied if species or environmental data are not 
appropriately screened and prepared, and proper model validation is not applied (Elith and Leathwick 
2009; Hawkins et al. 2003; Roberts et al. 2016). 
Fisheries and Oceans Canada (DFO) Science Branch proposed this peer review to provide a 
comprehensive and standardized approach to building SDMs based on best practices to ensure 
consistent quality and rigour in their use and application. The assessment and advice arising from this 
Canadian Science Advisory Secretariat (CSAS) Regional Peer Review (RPR) will be used to develop 
SDMs, and integrate them, where appropriate, into science and policy decisions related to the 
management and conservation of marine species. 
This Science Advisory Report is from the June 11-12, 2019 regional peer review on Habitat Suitability 
Modelling Best Practices for Canada’s Pacific Ocean. Additional publications from this meeting will be 
posted on the Fisheries and Oceans Canada (DFO) Science Advisory Schedule as they become 
available. 

http://www.isdm-gdsi.gc.ca/csas-sccs/applications/events-evenements/index-eng.asp
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SUMMARY 
• Species distribution models (SDMs) are relevant to several national objectives related to 

marine spatial planning, vulnerability assessments, emergency response, and stock 
assessment. Benefits to Fisheries and Oceans Canada (DFO) of effectively applying SDM 
methods include explicit consideration of ecological and management contexts, consistent 
preparation of available data, and application of appropriate analytical methods to construct 
and evaluate models. 

• DFO Pacific Science Branch has proposed a framework that includes a set of guidelines for 
the development of consistent, interpretable, and defensible SDMs.  The framework can be 
implemented with purpose-built scripts (https://gitlab.com/dfo-msea/sdm) written in the R 
statistical programming language (R Core Team 2018).The framework is intended to support 
practitioners by following current best practices and providing guidance on key aspects of 
data preparation, model fitting and evaluation, uncertainty estimation, and interpretation of 
results. 

• An application of the framework is illustrated by applying three modelling methods of 
increasing complexity to twelve benthic species, for two study areas on Canada's Pacific 
coast (Figure 1). The resulting predictions are evaluated using standardized performance 
metrics, and diagnostic plots and maps, including the relative importance and marginal 
effects of contributing predictors. The application demonstrates the importance of a 
consistent data model, building multiple models including a knowledge-based model, and 
uncertainty estimation. 

• SDMs for the twelve species are intended to support oil-spill response planning and 
preparedness. The models generally fit the data well as indicated by the performance 
metrics. The appropriateness of these model predictions for uses beyond oil spill response 
will need to be assessed by the user, based on clearly identified model objectives defined by 
their particular application. 

• Sources of uncertainty arise from methodological choices, and the availability and quality of 
data. Uncertainty in the model predictions is assessed with four different methods that 
reduce or measure uncertainty spatially across a study area. Additional sources of 
uncertainty are considered by following best practices for data selection where practical. 

• The framework is a scientifically defensible, transparent, and reproducible method for 
producing SDMs. It can be used to produce additional species models, or adapted for other 
modelling extents. 

• Several recommendations for the successful development and application of SDMs arose 
from the framework. 

BACKGROUND 

Overview of species distribution modelling 
Informed decisions about the management and conservation of marine species and their 
habitats increasingly rely on understanding their potential distributions. Since few marine 
species are inventoried, SDMs have become a common approach to estimating distributions of 
valued species. However, there are several challenges to building SDMs. These include the 
increasing accessibility of sophisticated statistical methods and environmental data, the variety 
of species occurrence data, and the diversity of sampling methods. There are also numerous 
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considerations related to model objectives, data preparation, variable selection, and analytical 
methods that influence the selection of appropriate methods and model interpretation. 
Best practice includes the definition of an ecological model describing the context for the 
analysis, a data model describing the occurrence and predictor data, and a statistical model 
relating the two (Figure 2). Since the management of a species or its habitat is inseparable from 
its ecology, the ecological model describes both the ecological and management contexts. Its 
definition begins with the best practice of clearly articulating the objectives of the model, and 
includes an explicit description of what is known about the species and its ecology. This informs 
the necessary extents and resolution of the model, and construction of the data model. The data 
model is comprised of species observations and environmental predictors presumed to 
characterise the habitat of the species. Observations (i.e., the occurrence data) come with an 
entire context that describes how, when, why, and where they were collected. Similarly, the 
context for predictor variables (the independent data) includes their resolution, whether they are 
static (e.g., elevation) or assumed so (long term averages of observations), and any relevant 
interactions between them. The statistical model is used to relate observations of a species to 
predictor data, and to predict species’ distribution across the study area. Statistical methods 
range broadly in complexity. The primary criteria for selecting statistical methods are whether it 
can meet objectives and how well it makes use of the available data. 

Data selection considerations 
All data come with biases and all models make assumptions. For example, observations of 
species may occur in only a portion of the species’ range, while assumptions about a species’ 
movement will determine whether model results are relevant year-round, or in a particular 
season. Best practice for SDMs requires the consideration of such biases and assumptions 
when selecting appropriate species and environmental data for modelling. 
Data on observations of species come in different forms and are collected in many ways. 
Targeted or non-random survey designs can lead to predictions of patterns in the data collection 
rather than the species’ distribution, especially if the sampling is spatially or environmentally 
structured (Araújo et al. 2019). Observations that span as much of the spatial and temporal 
extents of the species' distribution as possible are preferred. Reduced spatial, temporal, and 
taxonomic precision of occurrence data will limit modelling options. Combining observations 
from different data sources to increase sample size and extents should be considered, but care 
is required to avoid obscuring sampling biases as this may lead to misleading results and 
increased model uncertainty. 
Predictors describing the marine environment are available from a variety of sources from 
remote sensing technologies (e.g., satellite imagery, drones, acoustics) and ocean models 
(including elevation, bottom type, and ocean dynamics). Spatial variables, such as distance to 
important physical or biotic features (e.g., shoreline) should also be considered. Additionally, 
fishing effort can be an important predictor of species distribution in impacted ecosystems (e.g., 
Foster et al. 2015; Tien et al. 2017). The resolution of marine predictors can span orders of 
magnitude, ranging from the kilometre scale for oceanographic model predictors to the sub-
metre scale for acoustically-derived topographic predictors. Best practice requires predictor 
resolution to match the scale at which it is presumed to influence the species’ distribution (e.g., 
Wiens 1989). The inevitable mismatch in resolution between observations and predictors (and 
often among predictors) means that some predictor variables are likely to represent an 
ecological process well, while others will serve as proxies for predictors operating at different 
resolutions. How important this mismatch is will depend on the model objectives, primarily 
whether the model is required to be transferable (i.e., provide reliable predictions in places or at 
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times beyond the study area), or only explain the observed pattern within the study area.

 
Figure 2. Overview of the complete modelling process from developing the model context 
(Contextualization) to the assessment of the model predictions. The Framework developed here for 
species distribution modelling includes a series of prescribed steps that automate best practices. 
Generalized linear models (GLMs) are an example of a data-driven modelling method, while habitat 
suitability index (HSI) models are an example of a knowledge-based envelope modelling approach. 
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ASSESSMENT 

Overview of the SDM framework 
The SDM framework was developed with model building best practices in mind, and refined 
through experience obtained during its application. To implement the framework, purpose-built 
scripts (https://gitlab.com/dfo-msea/sdm) were written in the R statistical programming language 
(R Core Team 2018). The framework is comprised of six steps (Figure 2): data preparation, 
cross-validation, model fitting, model evaluation, prediction, and interpretation. Models are 
evaluated using a spatial block cross-validation approach to increase the independence of 
observations used to fit (training data) and evaluate (testing data) the models. Model fitting is 
done repeatedly with a variety of methods to create multiple models that are combined into an 
ensemble prediction. Ensemble predictions are more robust (Oppel et al. 2011) and allow 
insights into model uncertainty. Uncertainty is reduced by limiting extrapolation. It is evaluated 
by measuring the variation among model predictions that make up the ensemble, comparing a 
knowledge-based model prediction to a data-driven model prediction, and by mapping model 
residuals. Models are interpreted by examining the relative influence of predictor variables in the 
model and the marginal effects of each predictor on the observations. 
The framework focuses on data-driven SDMs (e.g., generalized linear models). It also considers 
the utility of knowledge-based envelope models, which provide a way of bounding species' 
distributions using hypothesized environmental constraints. They are used in the framework to 
describe the current ecological understanding of how species are related to their environment, 
and to evaluate how well this ecological understanding is reflected in the data-driven SDMs. 

Data and methods used for the application 
Twelve benthic species were selected for modelling to illustrate the application of the 
framework, and guide emergency oil spill response planning as part of the Regional Response 
Plan. The framework was applied to the shelf waters of Canada's Pacific Coast, excluding the 
Strait of Georgia, at two resolutions: 100 m for the Northern and Southern Shelf Bioregions, and 
20 m for the nearshore, North Central Coast region (Figure 1). Environmental predictor layers 
used in the models (Table 1) included bathymetry and related derivatives, physical, chemical 
and biological oceanography, fetch, and substrate. The predictors were a mix of interpolated 
measured variables, predictions from oceanographic models, and topographic models of 
varying complexity. 
The twelve benthic species selected are conservation priorities (Gale et al. 2019) or highly 
vulnerable to oil (Hannah et al. 2017).They were selected to represent a diversity of life history 
characteristics, habitats, and ecological communities, with different levels of data availability and 
quality, to assess how the framework performed with different combinations of ecological and 
data models. Occurrence data for the twelve species (Table 2) were sourced from targeted 
systematic surveys. For some species, more than one survey was used to source occurrence 
observations. This was needed when sample sizes were low (e.g., < 100 observations) or when 
the spatial coverage of observations across the study area was limited in either geographic 
(e.g., no observations in the southern portion) or predictor space (e.g., all observations occurred 
on rocky habitat). To reduce sampling bias, observations from different surveys were only 
combined if the sampling gear types were the same. Four of the twelve species selected (Ochre 
Sea Star, Blue Mussel, Littleneck Clam and Orange Sea Pen) did not have adequate 
occurrence data for data-driven modelling within our study areas. 
The application used three model fitting methods that span the range of model complexity: 
habitat suitability index (HSI) models, generalized linear models (GLMs), and boosted 

https://gitlab.com/dfo-msea/sdm
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regression trees (BRTs). HSIs are knowledge-based envelope models that depend on published 
information and expert consultation to bound species' distributions based on environmental 
conditions (Brooks 1997; US Fish and Wildlife Services [USFWS] 1981). GLMs and BRTs are 
statistical methods that relate occurrence data to environmental predictors (Elith and Graham 
2009). Following the framework methods, predictions from data-driven models (e.g., GLM and 
BRT) were combined into an ensemble prediction using a performance-weighted mean. 
The occurrence data used for model fitting and evaluation was divided into five spatially distinct 
datasets, or blocks, to perform cross validation. Five GLM, BRT and ensemble models were 
built and evaluated. The mean and standard deviation of a set of the evaluation metrics and 
prediction surfaces were calculated across the five models. Model performance was measured 
using the area under the receiver operator characteristic curve metric which ranges from 0 to 1. 
Scores less than 0.5 indicate models that are worse than random and scores of 1 indicate that 
the model perfectly predicts the occurrence data (Freeman and Moisen 2008; Merckx et al. 
2011). For each species, all models were evaluated with the same data to facilitate model 
comparison. However, development of the HSI models differed from the data-driven models in 
that only one HSI model was built for each species. Additionally, only HSI models could be built 
for species deemed to be data deficient (Table 2). 

Table 1. Sources of environmental predictor variables used to model habitat suitability for 12 species at 2 
spatial resolutions (20 m for the nearshore and 100 m for the shelf). 

Environmental 
data type 

Predictor layer(s) Source(s) Native  
resolution(s) 

Years Study 
area(s) 

Layers 
(N) 

Bathymetry Bathymetry 
Slope 
Rugosity 
Broad BPI 
Medium BPI  
Fine BPI 

British Columbia 3 arc-
second Bathymetric 
DEM (Carignan et al. 
2013) 

3 arc-seconds 1930-
2012 

shelf 6 

100 m DEM (Gregr 
2012) 

100 m  shelf 

Bathymetric models 
(Davies et al. 2019) 

20 m  nearshore 

Oceanographic Mean summer bottom salinity  
Bottom salinity range 
Mean summer bottom 
temperature 
Bottom temperature range 
Mean summer tidal speed  
Mean summer circulation 

Regional circulation 
model of BC (Masson 
and Fine 2012) 
 

3 km 1998–
2007 

nearshore 
shelf 

6 

Chlorophyll-a Mean NASA Ocean Color 1 km 2012-
2015 

shelf 1 

Fetch Sum fetch 
Minimum fetch 

Python script (Gregr 
2014) 

50 m  nearshore 2 

Substrate Rocky 
Mixed 
Sandy 
Muddy 

Background Substrate 
(Gregr and Haggarty 
2017) 

20 m, 100 m  nearshore 
shelf 

4 

  

https://oceandata.sci.gsfc.nasa.gov/
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Table 2. Summary of the occurrence data selected to model the twelve species in this study. Generalized 
linear regression and boosted regression trees were used to build models for the eight species not found 
data deficient (DD). Source data surveys (ABL = Abalone; RSU = Red Sea Urchin; BHM = benthic habitat 
mapping; Cuke = Sea Cucumber; HBLL = hard bottom long line; IPHC = International Pacific Halibut 
Commission) represent stock assessments or monitoring led by DFO Pacific and industry partners. For 
this application, data were sourced from those surveys were presence-absence (P-A) or absence only 
(Abs). Study area indicates nearshore (N) or shelf (S); Obs/n indicates the prevalence of observations for 
each species. 

Species Study 
area 

Sample 
size (n) 

Obs/n 
(%) 

Years Source 
(P-A) 

Source 
(Abs) 

Data 
type 

Spatial data 
precision 

Northern Abalone 
(Haliotis kamtschatkana) 

N 2,293 22 2011-
2016 

ABL, RSU, 
BHM 

- Points Site location (ABL) or 
estimated location 
along transect (RSU, 
BHM) 

Pacific Geoduck  
(Panopea generosa) 

N 9,350 58 2010-
2017 

GDK, BHM RSU, 
Cuke 

Points Estimated location 
along transect 

Pterygophora Kelp 
(Pterygophora californica) 

N 6,6071 3 2010-
2017 

ABL, Cuke, 
RSU, BHM2 

- Points Estimated location 
along transect 

Red Sea Urchin 
(Mesocentrotus 
franciscanus) 

N 3,300 26 2010-
2016 

RSU, BHM GDK, 
Cuke 

Points Estimated location 
along transect 

Eelgrass 
(Zostera spp.) 

N 12,5673 4 2010-
2017 

GDK, Cuke, 
RSU, BHM4 

- Points Estimated location 
along transect 

Dungeness Crab 
(Metacarcinus magister) 

S 3915 496 1982-
20097 

Dungeness 
Crab survey8 

- Points Start position of gear 
deployment 9 

Quillback Rockfish 
(Sebastes maliger) 

S 4,93710 4111 2003-
201812 

HBLL, IPHC - Lines Start and end 
position of longline 
gear 

Yelloweye Rockfish 
(Sebastes ruberrimus) 

S 4,93710 51 2003-
201812 

HBLL, IPHC - Lines Start and end 
position of longline 
gear 

Orange Sea Pen 
(Ptilosarcus gurneyi) 

S DD - - - - - - 

Pacific Littleneck Clam  
(Leukoma staminea) 

N DD - - - - - - 

Ochre Sea Star  
(Pisaster ochraceus) 

N DD - - - - - - 

Blue Mussel complex  
(Mytilus edulis, M. 
trossulus, M. 
galloprovincialis) 

N DD - - - - - - 

                                                
1 Erratum: October 2020 - 6,486 now reads 6,607 
2 Erratum: October 2020 - ABL, Cuke, BHM now reads ABL, Cuke, RSU, BHM 
3 Erratum: October 2020 - 12,650 now reads 12,567 
4 Erratum: October 2020 - ABL, Cuke, BHM now reads GDK, Cuke, RSU, BHM  
5 Erratum: October 2020 - 6,702 now reads 391 
6 Erratum: October 2020 - 10 now reads 49 
7 Erratum: October 2020 - 1975-2018 now reads 1982-2009 
8 Erratum: October 2020 - Crab, Shrimp trawl, BHM now reads Dungeness Crab surveys 
9 Erratum: October 2020 - Start of transect (Crab, Shrimp trawl) or estimated position on transect (BHM) 
now reads Start position of gear deployment 
10 Erratum: October 2020 - 4,758 now reads 4,937 
11 Erratum: October 2020 - 40 now reads 41 
12 Erratum: October 2020 - 2003-2017 now reads 2003-2018 
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Results from the application 
Maps of occurrence observations, model predictions and uncertainty measures, and the relative 
influence and marginal effects of the environmental predictor variables were generated for all 
species. Results for Quillback Rockfish are included as an example (Appendix A).  
The best performing ensemble models were Quillback Rockfish and Abalone (Figure 3). Models 
of Geoduck, Kelp, Urchin and Eelgrass all performed moderately well. The poorest performing 
models were Dungeness Crab and Yelloweye Rockfish, and although their performance was 
relatively poor, model predictions still performed better than random. 
Collectively, HSI models performed poorly with the majority of these models performing below 
the worst data-driven models. The poorest performing HSI model was Eelgrass which was no 
better than random. The differences in model performance are likely driven by differences in the 
ecological models and the distribution and quality of available occurrence data rather than 
simply the sample size of observations. 
For species where HSI model performance was particularly poor, comparisons of marginal 
effects and relative influence plots (e.g., Figure A3) point to potentially misunderstood or 
improperly scaled drivers. The identification of species-specific problems with the ecological or 
data models demonstrates the diagnostic utility of the performance metrics generated by the 
framework. For example, unevenness in the relative influence of predictors across cross-
validation models implies model misspecification, while differences in model predictions can 
indicate uncertainty in model structure and resolution. The use of multiple modelling methods 
thus provides a means to assess confidence in model structure and predictor appropriateness. 
For the eight species with adequate occurrence observations, model performance metrics and 
spatially explicit uncertainty measures provide managers with tools to assess confidence in the 
model predictions in a given area of interest (see Figure A2). For the four data deficient species, 
the preliminary envelope models provide a baseline from which data-driven models of 
distribution can be developed once observational data are available. 
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Figure 3. Performance of the eight distribution models for species with sufficient occurrence data. Mean 
area under the receiver operator characteristic curve (AUC) is based on five-fold spatial cross-block 
validation tests and are shown for each of the four model types: habitat suitability index (HSI), generalized 
linear model (GLM), boosted regression tree (BRT), and ensemble. Error bars represent one standard 
deviation. Prevalence and sample size are reported in the upper left corner. Bars not shown have AUC 
values less than 0.5. HSI and ensemble models were not evaluated with training data. 

Sources of Uncertainty 
• Uncertainty arises from the availability and quality of data. Sampling bias in the occurrence 

data is a main source of uncertainty and can be confounded if occurrence data are 
combined from multiple sources. This raises the question of when it is appropriate to 
combine data from different sources. Uncertainty is minimized by following best practice 
advice for data selection where practical. 
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• Interpolation within the study area is generally appropriate for models that perform well. If 
extrapolation to other times and places is deemed appropriate, then it should be done with 
caution. 

• Estimates of confidence in model predictions as well as insights into aspects of data quality 
and sampling bias can be gained through the comparison of knowledge-based and data-
driven model predictions. 

• A multi-model ensemble approach facilitates estimates of prediction uncertainty by allowing 
a comparison between models built with different methods. 

• The variation among predictions from models built using different subsets of the 
observations (using spatial block cross-validation) provides insight into spatial sampling bias 
and can highlight areas of lower certainty. Locations where the modelled relationships are 
less certain may be an indication of local non-stationarity. 

• Uncertainty stemming from errors in the predictor layers, spatial precision of observations, 
missing predictors, or scale mismatches between the predictors and observations are 
considered during the data preparation phase prior to the framework but are not captured in 
any numeric uncertainty estimate. In addition, model parameter uncertainty is not captured 
in the uncertainty assessments. 

CONCLUSIONS AND ADVICE 
The presented Research Document along with the formal peer review meeting and this Science 
Advice present an appropriate review of background materials along with challenges and best 
practices for species distribution model development. 
The framework is a scientifically defensible, transparent, and reproducible method for producing 
SDMs. It is suitable for producing additional species models, or adaptation to other study areas. 
The framework also facilitates updates when new occurrence data or improved predictors 
became available. This iterative approach to re-assessing model inputs for their suitability 
during the model interpretation phase and subsequently refining the models (see Figure 2) led 
to improved model performance in many cases. 
A multi-model approach facilitates uncertainty estimates by allowing a comparison between 
different model types. In the application presented, building knowledge-based envelope models 
helped define the current ecological understanding of the twelve species and served as a 
benchmark against which the data-driven ensemble model predictions could be compared. 
Building ensemble model predictions allowed for uncertainty to be estimated by examining the 
variation across component models. The relative influence and marginal effects of predictors 
also helped inform reliability assessments for individual species models. 
The framework has been applied to twelve species of variable data quality and quantity. The 
models generally fit the data well as indicated by the performance metrics. The twelve SDMs 
will be used to inform emergency response in the event of a marine oil spill incident. The 
appropriateness of these model predictions for uses beyond oil spill response will need to be 
assessed by the user, according to their particular application. 
The application was particularly successful for species of commercial or conservation interest, 
for which a large sample of suitable observations was available, although some species (e.g., 
Dungeness Crab), had observational data that was spatially biased toward more suitable 
habitat. For such species, additional observations obtained through a well-designed sampling 
program would improve the model predictions. For species with high-quality observational data, 
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modelling species density would be a valuable next step to provide additional information for oil 
spill response and other management needs. 
Several recommendations for the successful development and application of SDMs arose from 
the framework. 

• Clearly identify model objectives as they inform the development of the data and statistical 
models and are central to interpreting model results. 

• Take care in selecting species and environmental data, as modelling with biased data can 
lead to poor or misleading results. 

• Incorporate local ecological knowledge wherever possible; such knowledge is especially 
valuable in data poor situations. 

• Build knowledge-based envelope models, as they clarify the current ecological 
understanding, help identify important environmental predictors, and provide a means of 
estimating model uncertainty. 

• Build ensemble predictions from multiple models as the ensemble approach produces 
robust predictions and provides a means for estimating model uncertainty. 

• Use independently collected data for additional model validation where practical. 
The Research Document (Nephin et al., 2019) that accompanies this process contains much 
more detailed and explicit technical discussions of considerations in implementing species 
distribution modelling and is a valuable resource for practitioners. 

LIST OF MEETING PARTICIPANTS  

Last Name First Name Affiliation 

Anderson Sean DFO Science, Stock Assessment 
Beazley Lindsay DFO Science, Maritimes 
Benoy Nicholas DFO Ecosystem Management, Oceans 
Campbell Jill DFO Science 
Candy John DFO Science, Centre for Science Advice 
Chiang Eric DFO Oceans 
Christensen Lisa DFO Science, Centre for Science Advice 
Curtis Janelle DFO Science, Ecosystems Sciences 
Davies Sarah DFO Science, Ecosystems Sciences 
Dudas Sarah DFO Science, Ecosystems Sciences 
English Philina DFO Science, Stock Assessment 
Ferguson Kiyomi DFO Science 
Fields Cole DFO Science, Ecosystems Sciences 
Finney Jessica DFO Science, Ecosystems Sciences 
Gale Katie DFO Science, Ecosystems Sciences 
Gomez Catalina DFO Science, Maritimes 
Goulet Pierre DFO Science, Newfoundland Region 
Gregr Edward University of British Columbia 



Pacific Region 
Species Distribution Modelling Framework and Its 

Application to Twelve Species on Canada’s Pacific Coast 
 

12 

Last Name First Name Affiliation 

Gullage Lauren DFO Science, Newfoundland Region 
Herborg Matthias DFO Science, Ecosystems Sciences 
Hubley Brad DFO Science, Maritimes Region 
Kenchington Ellen DFO Science, Maritimes 
Knudby Anders University of Ottawa 
Lessard Joanne DFO Science, Ecosystems Sciences 
Leus Dan DFO Science, Ecosystems Sciences 
Murillo-Perez Javier DFO Science, Maritimes 
Nephin Jessica DFO Science, Ecosystems Sciences 
Novaczek Emilie DFO Science, Newfoundland Region 
O Miriam DFO Science, Ecosystems Sciences 
Pretty Christina DFO Science, Newfoundland 
Poehlke Travis DFO Ecosystem Management, Oceans 
Robinson Cliff DFO Science, Ecosystems Sciences 
Rooper Chris DFO Science, Stock Assessment 
Rubidge Emily DFO Science, Ecosystems Sciences 
Sameoto Jessica DFO Science, Maritimes 
Schut Steven DFO Science, Stock Assessment 
St. Germain Candice DFO Science, Oceans Science Division 
Warren Margaret DFO Science, Newfoundland Region 
Wells Nadine DFO Science, Newfoundland 
Yakgujaanas Jaasaljuus Council of Haida Nations 

 

SOURCES OF INFORMATION 
This Science Advisory Report is from the June 11-12, 2019 regional peer review on Habitat 
Suitability Modelling Best Practices for Canada’s Pacific Ocean. Additional publications from this 
meeting will be posted on the Fisheries and Oceans Canada (DFO) Science Advisory Schedule 
as they become available. 
Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., Early, R., Garcia, 

R.A., Guisan, A., Maiorano, L., and Naimi, B. 2019. Standards for distribution models in 
biodiversity assessments. Science Advances 5(1): eaat4858. 

Brooks, R.P. 1997. Improving Habitat Suitability Index Models. Wildlife Society Bulletin (1973-
2006) 25(1): 163-167.  

Carignan, K., Eakins, B., Love, M., Sutherland, M., and McLean, S. 2013. Bathymetric Digital 
Elevation Model of British Columbia, Canada: Procedures, Data Sources, and Analysis. 
NOAA National Geophysical Data Center (NGDC). 

Davies, S.C., Gregr, E.J., Lessard, J., Bartier, P., and Wills, P. 2019. Bathymetric elevation 
models for ecological analyses in Pacific Canadian coastal waters. Can. Tech. Rep. Fish. 
Aquat. Sci. 3321: vi + 38p. 

http://www.isdm-gdsi.gc.ca/csas-sccs/applications/events-evenements/index-eng.asp


Pacific Region 
Species Distribution Modelling Framework and Its 

Application to Twelve Species on Canada’s Pacific Coast 
 

13 

Elith, J., and Leathwick, J.R. 2009. Species distribution models: ecological explanation and 
prediction across space and time. Annual review of ecology, evolution, and systematics 40: 
677-697. 

Elith, J., and Graham, C.H. 2009. Do they? How do they? WHY do they differ? On finding 
reasons for differing performances of species distribution models. Ecography 32(1): 66-77. 

Foster, S.D., Dunstan, P.K., Althaus, F., and Williams, A. 2015. The cumulative effect of trawl 
fishing on a multispecies fish assemblage in south‐eastern Australia. J. Appl. Ecol. 52(1): 
129-139. 

Freeman, E.A., and Moisen, G.G. 2008. A comparison of the performance of threshold criteria 
for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217(1-2): 
48-58. 

Gale, K.S.P., Frid, A., Lee, L., McCarthy, J., Robb, C., Rubidge, E., Steele, J., and Curtis, 
J.M.R. 2018. A framework for identification of ecological conservation priorities for Marine 
Protected Area network design and its application in the Northern Shelf Bioregion. DFO 
Can. Sci. Advis. Sec. Res. Doc. 2018/055. viii + 186 p. 

Gregr, E.J. 2012. BC_EEZ_100m: A 100 m raster of the Canadian Pacific Exclusive Economic 
Zone. SciTech Environmental Consulting, Vancouver BC. 

Gregr, E.J. 2014. Fetch Geometry Calculator Version 1.0 – User Guide. SciTech Environmental 
Consulting, Vancouver, BC. 

Gregr, E.J., and Haggarty, D. 2017. Background Substrate and the integration of nearshore and 
deep water classifications (Draft). SciTech Environmental Consulting, Vancouver, BC. 

Hannah, L., St. Germain, C., Jeffery, S., Patton, S., and O, M. 2017. Application of a framework 
to assess vulnerability of biological components to ship-source oil spills in the marine 
environment in the Pacific Region. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/057. ix + 145 
p. 

Hawkins, D.M., Basak, S.C., and Mills, D. 2003. Assessing model fit by cross-validation. Journal 
of Chemical Information and Computer Sciences 43: 579-586. doi:10.1021/ci025626i. 

Masson, D., and Fine, I. 2012. Modeling seasonal to interannual ocean variability of coastal 
British Columbia. Journal of Geophysical Research: Oceans 117(C10): C10019:10011-
10014. doi:10.1029/2012jc008151. 

Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M., and Vanaverbeke, J. 2011. Null models 
reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability 
modelling. Ecol. Model. 222(3): 588-597. 

Nephin, J., Gregr, E.J., St. Germain, C., Fields, C., and Finney, J.L. 2019. Development of a 
species distribution modelling framework and its application to twelve species on Canada's 
Pacific coast. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/nnn. In Press. 

Oppel, S., Gardner, B., O’Connell, A.F., Louzao, M., Miller, P.I., Meirinho, A., and Ramírez, I. 
2011. Comparison of five modelling techniques to predict the spatial distribution and 
abundance of seabirds. Biol. Conserv. 156: 94-104. doi:10.1016/j.biocon.2011.11.013. 

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. 



Pacific Region 
Species Distribution Modelling Framework and Its 

Application to Twelve Species on Canada’s Pacific Coast 
 

14 

Roberts, D.R., Bahn, V., Ciuti, S., Wintle, B.A., Guillera-Arroita, G., Elith, J., Warton, D.I., Hartig, 
F., Dormann, C.F., Lahoz-Monfort, J.J., Hauenstein, S., Thuiller, W., Schröder, B., and 
Boyce, M.S. 2016. Cross-validation strategies for data with temporal, spatial, hierarchical, or 
phylogenetic structure. Ecography 40: 913-929. doi:10.1111/ecog.02881. 

Tien, N., Craeymeersch, J., Van Damme, C., Couperus, A., Adema, J., and Tulp, I. 2017. 
Burrow distribution of three sandeel species relates to beam trawl fishing, sediment 
composition and water velocity, in Dutch coastal waters. J. Sea Res. 127: 194-202. 

USFWS. 1981. Standards for the develoment of habitat suitability index models. U.S. 
Department of Interior, Fish and Wildlife Service, Division of Ecological Services ESM 103. 

Wiens, J.A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385-397. 
  



Pacific Region 
Species Distribution Modelling Framework and Its 

Application to Twelve Species on Canada’s Pacific Coast 
 

15 

APPENDIX A. RESULTS FROM QUILLBACK ROCKFISH SPECIES 
DISTRIBUTION MODEL 

This appendix presents an example of the modelling results from the application of the SDM 
framework on Canada’s Pacific Coast with Quillback Rockfish as an example species. For the 
modelling results for all other species in the application see Nephin et al. (2019). Figure A1 
represents the distribution of the presence and absence observations used for modelling, Figure 
A2 shows the predictions for the distribution of Quillback Rockfish within the study area and its 
related uncertainty, and Figure A3 displays the relative influence and marginal effects of the 
environmental predictor variables. 

 
Figure A.1 Quillback Rockfish presence and absence observations within the shelf study area. 
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Figure A.2. Predictions of Quillback Rockfish distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. 
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Figure A.3. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Quillback Rockfish models. 
For GLM and BRT models, the bars in the relative influence plots represent the mean and the lines show 
the minimum and maximum relative influence across the five-fold CV models. In the marginal effects 
plots, solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous rockiness index for GLM and BRT models. 
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